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Abstract-The linear theory of heat and mass transfer is considered. Some general theorems are formulated, 
i.e. a reciprocity theorem and a variational theorem (no use is made of the Laplace transform). The 
functional derived herein gives all the governing equations, including the boundary and initial conditions, 

as Euler equations. 

INTRODUCTION TRANSFER EQUATIONS 

THE INTERRELATION between heat and mass transfer 
in porous bodies was first established by Luikov [l, 
21 who proposed a two-term relationship for non- 
isothermal mass diffusion and also determined exper- 
imentally the coefficients of diffusion and thermo- 
diffusion for a number of moist materials. Later 
[3, 43 via the use of thermodynamics of irreversible 
processes, he defined a coupled system of partial 
differential equations for heat and mass transfer 
potential distributions in porous bodies. Applications 
in this and other fields such as drying theory, building 
thermo-physics and heat and moisture migration in 
soils can be found in ref. [5]. Independently, Krischer 
[6] and De Vries [7] also proposed systems of differ- 
ential equations of the Luikov type for temperature 
and moisture content distributions in porous bodies. 

The governing equations in the linear theory of heat 
and mass transfer (Luikov’s equations) are [3-51 

aW 
- = a,(AW+aAT), xeB, t > 0 
at 

where T denotes the temperature, W the mass content, 
a the thermal diffusivity, a,,, the mass diffusivity, E the 
phase-change criterion (i.e. E = 1 all vapour, E = 0 all 
liquid), r the latent heat of evaporation, c the specific 
heat, 6 the thermogradient coefficient, x the spatial 
position, t the time, and A the Laplace operator. 

The analytical solution of these types of equations 
presents great mathematical difficulties, and conse- 
quently solutions are given for only the simplest of 
geometrical configurations and boundary conditions 
[4]. In any realistic problem resort must be made to 
numerical techniques. These have usually been based 
on some general theorems, i.e. a reciprocity theorem 
and a variational theorem. 

To the above field equations one adjoining the 
boundary conditions 

j= -u,,,p(z+hg)=i(x,t), xeaB,,t>O 

The variational formulation based on local poten- 
tial to simplified non-linear heat and mass transfer 
equations was proposed by Kumar [8]. Glazunov [9] 
proved that for the non-linear transport problem vari- 
ational classic type theorems do not exist. Some non- 
classic type principles for solution of the non-linear 
interrelated heat and mass transfer problems are avail- 
able in refs. [l&12]. 

T= f+(x,t), x~aB~,t>O 

w = FQX, t), XEaB,, t > 0 

and the initial conditions 

In this paper Luikov’s linear theory of heat and 
mass transfer is considered and the reciprocity 
theorem and the variational theorem are established. 
The procedure shown herein does not require any 
transformation of the field equations and includes 
the boundary and initial conditions. 

T = To(x), XEB, t = 0 (6) 

w= W,(x), xEB,t=o (7) 

where 1 is the thermal conductivity, p the density of 
a perfectly dry body, n the unit outward normal, a/an 
the normal derivative ; f’ denotes the prescribed tem- 
perature on aB,, Ff’ the moisture content on as,, 4 

(1) 

(3) 

(4) 

(5) 
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thermal diffusivity [m’ SC’] 
mass diffusivity [m’ SC’] 
matrix operator 
body 
boundary 
specific heat [J kg-’ K-‘1 
space 
functional 
vector 
mass flux [kg mz s-‘1 
unit outward normal 
heat flux [w m-*1 
heat of phase change [J kg-‘] 
time [s] 
temperature [K] 
vector 
moisture content [kg kg-‘] 
spatial position [ml. 

NOMENCLATURE 

E phase-change criterion 
2 thermal conductivity [w m-’ K-‘1 

P density [kgme3]. 

Subscripts and superscripts 

% B system 
* 

surface 
, dual 
0 initial 
E space 

T, 4 heat 
T transposition 
W, j mass. 

Operators 
V gradient 
A Laplacian 
* convolution 
. scalar product 

Greek symbols 
6 thermogradient coefficient [K-l] 

(* , -) bilinear form. 

the heat flux on aB,, j the mass flux on aBj; T,, and <Au, v>E = <f, v>,, VEE (12) 
W,, are prescribed initial values ; B = B u aB. 

The set of basic equations (l)-(7) can be put into where (- , *)E denotes the bilinear form on Ex E’ rep- 

the operator form resented by the integrals 

Au+f= 0, A: E-+ E’,uEE,~EE’ 
(*) *ol+f2*~2+f3(X,% 

where 

u = [T, W; T, W; T, W,q, j]’ (9) +f.,(X,O)a4)dV+ 
s 

(fs * us) dS + 
f = [O,O, -&pT,, -wpW,,; &&Eri -Sf, --Er@ 8% s 

dB,(fs *us) dS 
I 

(10) 

and A is a linear matrix (8 x 8) operator the non-zero 
+ 

I 
(f,*a,)dS+ (fs*as)dS (13) 

B, & 
elements of which are given by 

where 

A,, =&p($- (a+F)A) 

A,, = -wa,pA = A2, 

A,, = up i- a,A 
( ) 

Ax3 = 6cp 
A,, = up 
A,, = -6 = -A75 
A,, = --Er = -Ash. (11) 

Here E denotes the space of ordered arrays of the 
form given in equation (9). The dual space of E is 
denoted by E’. 

RECIPROCITY THEOREM 

Alternatively, one may consider a problem, equi- 

f = [f,, . . ,f*]=, v = [VI,. . . ,U*]T. 

In equation (13) f * u denotes the convolution of f 
and u [14] 

I 
f * u(x, t) = 

I 
f(x, t - z)u(x, t) dz. (14) 

0 

The capillary-porous body is considered subject to 
two different systems of heat and mass loadings f” and 
two corresponding configurations u’, where u = 1,2. 

Theorem 1. If a capillary-porous body is subjected 
to two different systems of heat and mass loadings 
f”, then between the corresponding configurations ua 
there is the following relation : 

(f’,U2)E = (f2,U’)E (15) 

valent to equation (8) given by [13] where 
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a,B= 1,2,a#& (16) 

Proox On the basis of relation (12) one has 

(An=,ua>E = (P,u@>E, a,B = 1,2, c1$& (17) 

From equations (9)-( 1 l), (13) and (17) (using Green’s 
theorem and properties of the convolution), one 
obtains 

+$r $(W* ~+a~VW*.VW 
> 

-6cT0T 

(@*Z-)dS+ ,,(a$* W)dS J i 
+ (6(T- f’) *q) dS + 

Br J (ET( W- It’) *j) dS. aB 
w 

(21) 

Thus, f(u) in equation (21) is the functional associ- 
ated with Au+f in equation (8) ; that is, the solution 
of the set of equations (l)-(7) is a critical point (a 
point u E E is called a critical point of the functional 
f(u) if gradf = 0) of f. This is proved in the fol- 
lowing theorem. 

Theorem 2. Let u e E, and let f(u) have a linear 
Bteaux differential at every u, where f is the func- 
tional defined in equation (21). Then 

+VW’ **VT2)+sr 
( 

;(W’ * W2) 

+a,VW’ **VW2 
>> J dV+ (S(q2 * T’ 

3% 

6f(u, u’) = 0 (22) 

if and only if u is a solution of equation (8). 
Proof. Let II’ be an arbitrary element in E. Then the 

Glteaux differential off is 

J Rffu,u’) = <wdf(u),u’>, = P 
(.zr(j2* W’+j’* W2))dS SC ( dT 

+q’*T2))dS+ .¶ Is2 ar aa 
w 

(18) 

which implies 

-%(AW+6A79 
> 

* W’+&(T(O)-TO)T (Au’,u’)~ = (AM~,u’)~. (1% 

From equations (17) and (19) one obtains relation 
(I 5). This completes the proof of the theorem. 

+Er(W(O)- W,)W’ 
> J dV+ (c&j-q) * T’)dS 

3% 
VARIATIONAL THEOREM 

The necessary and sufficient condition that there 
exists a variational functional corresponding to the 
operator, equation (S), is that equation (19) holds for 
each u’,u2~E, i.e. the bilinear form must be sym- 
metric in u’ and u* [15]. 

The corresponding variational functional is given 

by 

+ J @G-j) * W’) dS + @(T- f) * q’) dS dS 
I J 4 

+ J (w(W- @) *j’) dS = <Au+f,u’),. (23) 
8% 

f(u) = :<Au, u>, + <r, U)E. (20) 

A demonstration of this important result can be found 
in ref. [16]. 

One first proves sufficiency. Suppose that u E E is 
a solution of equations (l)-(7). Then equation (23) 
becomes 

(Au+f, II’)& = (gradf(u), u’), = 0 (24) 

From equations (9)~(II), (13) and (20) (using 
Green’s theorem and the property of the convolution) 
one obtains 

which implies equation (22). 
To prove the necessity, assume that equation (22) 

holds. In view of Lemmas l-4 1171 one can see that 

grad f(u) = Au + f = 0. 

This completes the proof of the theorem. 

(25) 
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CONCLUSIONS 

The results obtained in this paper can make a base 

9. 

to construct the numerical solutions of initial-bound- 
ary value problems of linear heat and mass transfer. 

10. 

The variational formulation for the finite element 
method [18] and the reciprocity equation for the 11. 

boundary element method 1193. The fundamental 
solutions to this equation, corresponding to a con- 
centrated heat and mass source, can be found in ref. 

12. 

WI. 
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QUELQUES THEOREMES DANS LA THEORIE DE LUIKOV SUR LE TRANSFERT DE 
CHALEUR ET DE MASSE DANS LES CORPS MICROPOREUX 

R&urn&-On considere la thtorie lineaire du transfert de chaleur et de masse. Quelques thtoremes generaux 
sont formules tels que, par exemple, un thtoreme de reciprocite et un theoreme variationnel (il n’est 
pas fait usage de la transformation de Laplace). La fonctionnelle utilisee donne toutes les equations 

fondamentales qui incluent les conditions aux limites et initiales, comme les equations d’Euler. 

EINIGE THEOREME ZUR LUIKOV’SCHEN THEORIE DES WARME- UND 
STOFFTRANSPORTS IN KAPILLAR-POR&IEN KORPERN 

Zusammenfassung-Die lineare Theorie des Warme- und Stofftransports wird betrachtet. Einige all- 
gemeingiiltige Theoreme werden formuliert, z. B. ein Reziprozitatstheorem und ein Variationstheorem 
(die Laplace-Transformation wird nicht verwendet). Das hier hergeleitete Funktional ergibt alle maBge- 

benden Gleichungen sowie die Rand- und Anfangsbedingungen und die Euler-Gleichungen. 

HECKOJIbKO TEOPEM TEOPHW TETIJIO- H MACCOI-IEPEHOCA J-IbIKOBA B 
KAI-IUJIJDIPHO-HOPMCTbIX TEJIAX 

Aa~n-Pa~MaTp~BaeTCK J‘HHeiiHaK TeOpHK T‘XUIO- H MaCCOnepeHOCa. C+OpMyJIHpOBaHO HeCKO- 
JlbKO 06mex TeOpM, a HMCHHO, TeOpeMa B3PHMHOCTH H BapHalPiOHHan TeOpeMa (6es HCItOJlb30BaHAR 
npeO6pa30BaHHK .hLJIaCa). hdBenf2HHbIi-i (PYHKI&HOHU AaCT B03MOHHOCTb IlOJIy’iHTb BCe OCHOBHble 

,‘paBHeHHX T&illa ypaBHeH&ifi %Jlinepa C rPaHHYHhlMU H Ha’IUIbHblMB YCJIOBHKMH. 


